7 research outputs found

    Ensemble Inhibition and Excitation in the Human Cortex: an Ising Model Analysis with Uncertainties

    Get PDF
    The pairwise maximum entropy model, also known as the Ising model, has been widely used to analyze the collective activity of neurons. However, controversy persists in the literature about seemingly inconsistent findings, whose significance is unclear due to lack of reliable error estimates. We therefore develop a method for accurately estimating parameter uncertainty based on random walks in parameter space using adaptive Markov Chain Monte Carlo after the convergence of the main optimization algorithm. We apply our method to the spiking patterns of excitatory and inhibitory neurons recorded with multielectrode arrays in the human temporal cortex during the wake-sleep cycle. Our analysis shows that the Ising model captures neuronal collective behavior much better than the independent model during wakefulness, light sleep, and deep sleep when both excitatory (E) and inhibitory (I) neurons are modeled; ignoring the inhibitory effects of I-neurons dramatically overestimates synchrony among E-neurons. Furthermore, information-theoretic measures reveal that the Ising model explains about 80%-95% of the correlations, depending on sleep state and neuron type. Thermodynamic measures show signatures of criticality, although we take this with a grain of salt as it may be merely a reflection of long-range neural correlations.Comment: 17 pages, 8 figure

    Thermalization at Low Temperatures via Slowly-Driven Multi-Site Baths

    Full text link
    We study the thermalization properties of one-dimensional open quantum systems coupled to baths at their boundary. The baths are driven to their thermal states via Lindblad operators, while the system undergoes Hamiltonian dynamics. We specifically consider multi-site baths and investigate the extent to which the late-time steady state resembles a Gibbs state at some controllable temperature set by the baths. We study three models: a non-interacting fermion model accessible via free-fermion technology, and two interacting models, the XZ model and the chiral clock model, which are accessible via tensor network methods. We show that, by tuning towards the weak coupling and slow driving limits, one can engineer low temperatures in the bulk of the system provided the bath size is big enough. We use this capability to study energy transport in the XZ model at lower temperatures than previously reported. Our work paves the way for future studies of interacting open quantum systems at low temperatures.Comment: 12 pages, 6 figure

    Near-Equilibrium Approach to Transport in Complex Sachdev-Ye-Kitaev Models

    Full text link
    We study the non-equilibrium dynamics of a one-dimensional complex Sachdev-Ye-Kitaev chain by directly solving for the steady state Green's functions in terms of small perturbations around their equilibrium values. The model exhibits strange metal behavior without quasiparticles and features diffusive propagation of both energy and charge. We explore the thermoelectric transport properties of this system by imposing uniform temperature and chemical potential gradients. We then expand the conserved charges and their associated currents to leading order in these gradients, which we can compute numerically and analytically for different parameter regimes. This allows us to extract the full temperature and chemical potential dependence of the transport coefficients. In particular, we uncover that the diffusivity matrix takes on a simple form in various limits and leads to simplified Einstein relations. At low temperatures, we also recover a previously known result for the Wiedemann-Franz ratio. Furthermore, we establish a relationship between diffusion and quantum chaos by showing that the diffusivity eigenvalues are upper bounded by the chaos propagation rate at all temperatures. Our work showcases an important example of an analytically tractable calculation of transport properties in a strongly interacting quantum system and reveals a more general purpose method for addressing strongly coupled transport.Comment: 23 pages, 10 figure

    Heuristic recurrent algorithms for photonic Ising machines

    No full text
    © 2020, The Author(s). The inability of conventional electronic architectures to efficiently solve large combinatorial problems motivates the development of novel computational hardware. There has been much effort toward developing application-specific hardware across many different fields of engineering, such as integrated circuits, memristors, and photonics. However, unleashing the potential of such architectures requires the development of algorithms which optimally exploit their fundamental properties. Here, we present the Photonic Recurrent Ising Sampler (PRIS), a heuristic method tailored for parallel architectures allowing fast and efficient sampling from distributions of arbitrary Ising problems. Since the PRIS relies on vector-to-fixed matrix multiplications, we suggest the implementation of the PRIS in photonic parallel networks, which realize these operations at an unprecedented speed. The PRIS provides sample solutions to the ground state of Ising models, by converging in probability to their associated Gibbs distribution. The PRIS also relies on intrinsic dynamic noise and eigenvalue dropout to find ground states more efficiently. Our work suggests speedups in heuristic methods via photonic implementations of the PRIS
    corecore